

jax_verify Documentation

jax_verify is a library for verification of neural network specifications.

Installation

Install jax_verify by running:

$ pip install jax_verify

Support

If you are having issues, please let us know by filing an issue on our
issue tracker [https://github.com/deepmind/jax_verify/issues].

License

jax_verify is licensed under the Apache 2.0 License.

API Reference

Verification methods

	
jax_verify.crown_bound_propagation(function, *bounds)[source] [https://github.com/deepmind/jax_verify/blob/master/jax_verify/src/fastlin.py#L512#L524]

	Performs CROWN as described in https://arxiv.org/abs/1811.00866.

	Parameters

	
	function – Function performing computation to obtain bounds for. Takes as
only argument the network inputs.

	*bounds – jax_verify.IntervalBound, bounds on the inputs of the function.

	Returns

	Bounds on the output of the function obtained by FastLin

	Return type

	output_bound

	
jax_verify.crownibp_bound_propagation(function, bounds)[source] [https://github.com/deepmind/jax_verify/blob/master/jax_verify/src/crown_ibp.py#L352#L388]

	Performs Crown-IBP as described in https://arxiv.org/abs/1906.06316.

We first perform IBP to obtain intermediate bounds and then propagate linear
bounds backwards.

	Parameters

	
	function – Function performing computation to obtain bounds for. Takes as
only argument the network inputs.

	bounds – jax_verify.IntervalBounds, bounds on the inputs of the function.

	Returns

	Bounds on the output of the function obtained by Crown-IBP

	Return type

	output_bound

	
jax_verify.fastlin_bound_propagation(function, *bounds)[source] [https://github.com/deepmind/jax_verify/blob/master/jax_verify/src/fastlin.py#L488#L500]

	Performs FastLin as described in https://arxiv.org/abs/1804.09699.

	Parameters

	
	function – Function performing computation to obtain bounds for. Takes as
only argument the network inputs.

	*bounds – jax_verify.IntervalBound, bounds on the inputs of the function.

	Returns

	Bounds on the output of the function obtained by FastLin

	Return type

	output_bound

	
jax_verify.ibpfastlin_bound_propagation(function, *bounds)[source] [https://github.com/deepmind/jax_verify/blob/master/jax_verify/src/fastlin.py#L527#L541]

	Obtains the best of IBP and Fastlin bounds.

	Parameters

	
	function – Function performing computation to obtain bounds for. Takes as
only argument the network inputs.

	*bounds – jax_verify.IntervalBound, bounds on the inputs of the function.

	Returns

	Bounds on the output of the function obtained by FastLin

	Return type

	output_bound

	
jax_verify.interval_bound_propagation(function, *bounds)[source] [https://github.com/deepmind/jax_verify/blob/master/jax_verify/src/ibp.py#L299#L311]

	Performs IBP as described in https://arxiv.org/abs/1810.12715.

	Parameters

	
	function – Function performing computation to obtain bounds for. Takes as
only argument the network inputs.

	*bounds – jax_verify.IntervalBounds, bounds on the inputs of the function.

	Returns

	Bounds on the output of the function obtained by IBP

	Return type

	output_bound

	
jax_verify.solve_planet_relaxation(logits_fn, initial_bounds, boundprop_transform, objective, objective_bias, index, solver=<class 'jax_verify.src.cvxpy_relaxation_solver.CvxpySolver'>)[source] [https://github.com/deepmind/jax_verify/blob/master/jax_verify/src/solve_relaxation.py#L27#L64]

	Solves the “Planet” (Ehlers 17) or “triangle” relaxation.

The general approach is to use jax_verify to generate constraints, which can
then be passed to generic solvers. Note that using CVXPY will incur a large
overhead when defining the LP, because we define all constraints element-wise,
to avoid representing convolutional layers as a single matrix multiplication,
which would be inefficient. In CVXPY, defining large numbers of constraints is
slow.

	Parameters

	
	logits_fn – Mapping from inputs (batch_size x input_size) -> (batch_size,
num_classes)

	initial_bounds – IntervalBound with initial bounds on inputs,
with lower and upper bounds of dimension (batch_size x input_size).

	boundprop_transform – bound_propagation.BoundTransform instance, such as
jax_verify.ibp_transform. Used to pre-compute interval bounds for
intermediate activations used in defining the Planet relaxation.

	objective – Objective to optimize, given as an array of coefficients to be
applied to the output of logits_fn defining the objective to minimize

	objective_bias – Bias to add to objective

	index – Index in the batch for which to solve the relaxation

	solver – A relaxation.RelaxationSolver, which specifies the backend to solve
the resulting LP.

	Returns

	The optimal value from the relaxation
status: The status of the relaxation solver

	Return type

	val

Bound objects

	
class jax_verify.LinearBound(lower_bound: jax_verify.src.fastlin.LinearExpression, upper_bound: jax_verify.src.fastlin.LinearExpression, reference: Optional[LinearBound])[source] [https://github.com/deepmind/jax_verify/blob/master/jax_verify/src/fastlin.py#L120#L231]

	Represent a pair of linear functions that encompass feasible activations.

We store the linear functions as LinearExpressions objects in lower_lin and
upper_lin, and also maintain a reference to the initial bounds on the input
to be able to concretize the bounds when needed.

	
class jax_verify.IntervalBound(lower_bound: jax._src.numpy.lax_numpy.ndarray, upper_bound: jax._src.numpy.lax_numpy.ndarray)[source] [https://github.com/deepmind/jax_verify/blob/master/jax_verify/src/ibp.py#L32#L73]

	Represent an interval where some activations might be valid.

Utility methods

	
jax_verify.open_file(name, *open_args, **open_kwargs)[source] [https://github.com/deepmind/jax_verify/blob/master/jax_verify/src/utils.py#L24#L34]

	Load file, downloading to /tmp/jax_verify first if necessary.

SDP Verification

The sdp_verify directory contains a largely self-contained implementation of
the SDP-FO (first-order SDP verification) algorithm described in Dathathri et al
2020. We encourage projects building off this code to fork this directory,
though contributions are also welcome!

The core solver is contained in sdp_verify.py. The main function is
dual_fun(verif_instance, dual_vars), which defines the dual upper bound from
Equation (5). For any feasible dual_vars this provides a valid bound. It is
written amenable to autodiff, such that jax.grad with respect to
dual_vars yields a valid subgradient.

We also provide solve_sdp_dual_simple(verif_instance), which implements the
optimization loop (SDP-FO). This initializes the dual variables using our
proposed scheme, and performs projected subgradient steps.

Both methods accept a SdpDualVerifInstance which specifies (1) the
Lagrangian, (2) interval bounds on the primal variables, and (3) dual variable
shapes.

As described in the paper, the solver can easily be applied to other
input/output specifications or network architectures for any QCQP. This involves
defining the corresponding QCQP Lagrangian and creating a
SdpDualVerifInstance. In examples/run_sdp_verify.py we include an
example for certifying adversarial L_inf robustness of a ReLU convolutional
network image classifier.

API Reference

	
jax_verify.sdp_verify.dual_fun(verif_instance, dual_vars, key=None, n_iter=30, scl=- 1, exact=False, dynamic_unroll=True, include_info=False)[source] [https://github.com/deepmind/jax_verify/blob/master/jax_verify/src/sdp_verify/sdp_verify.py#L39#L133]

	Returns the dual objective value.

	Parameters

	
	verif_instance – a utils.SdpDualVerifInstance, the verification problem

	dual_vars – A list of dual variables at each layer

	key – PRNGKey passed to Lanczos

	n_iter – Number of Lanczos iterations to use

	scl – Inverse temperature in softmax over eigenvalues to smooth optimization
problem (if negative treat as hardmax)

	exact – Whether to use exact eigendecomposition instead of Lanczos

	dynamic_unroll – bool. Whether to use jax.fori_loop for Lanczos for faster
JIT compilation. Default is False.

	include_info – if True, also return an info dict of various other
values computed for the objective

	Returns

	Either a single float, the dual upper bound, or if include_info=True,
returns a pair, the dual bound and a dict containing debugging info

	
jax_verify.sdp_verify.solve_sdp_dual(verif_instance, key=None, opt=None, num_steps=10000, verbose=False, eval_every=1000, use_exact_eig_eval=True, use_exact_eig_train=False, n_iter_lanczos=30, scl=- 1.0, lr_init=0.001, steps_per_anneal=100, anneal_factor=1.0, num_anneals=3, opt_name='adam', gd_momentum=0.9, add_diagnostic_stats=False, opt_multiplier_fn=None, init_dual_vars=None, init_opt_state=None, opt_dual_vars=None, kappa_reg_weight=None, kappa_zero_after=None, device_type=None, save_best_k=1)[source] [https://github.com/deepmind/jax_verify/blob/master/jax_verify/src/sdp_verify/sdp_verify.py#L274#L442]

	Compute verified lower bound via dual of SDP relaxation.

NOTE: This method exposes many hyperparameter options, and the method
signature is subject to change. We instead suggest using
solve_sdp_dual_simple instead if you need a stable interface.

	
jax_verify.sdp_verify.solve_sdp_dual_simple(verif_instance, key=None, opt=None, num_steps=10000, eval_every=1000, verbose=False, use_exact_eig_eval=True, use_exact_eig_train=False, n_iter_lanczos=100, kappa_reg_weight=None, kappa_zero_after=None, device_type=None)[source] [https://github.com/deepmind/jax_verify/blob/master/jax_verify/src/sdp_verify/sdp_verify.py#L169#L271]

	Compute verified lower bound via dual of SDP relaxation.

	Parameters

	
	verif_instance – a utils.SdpDualVerifInstance

	key – jax.random.PRNGKey, used for Lanczos

	opt – an optax.GradientTransformation instance, the optimizer.
If None, defaults to Adam with learning rate 1e-3.

	num_steps – int, the number of outer loop optimization steps

	eval_every – int, frequency of running evaluation step

	verbose – bool, enables verbose logging

	use_exact_eig_eval – bool, whether to use exact eigendecomposition instead of
Lanczos when computing evaluation loss

	use_exact_eig_train – bool, whether to use exact eigendecomposition instead
of Lanczos during training

	n_iter_lanczos – int, number of Lanczos iterations

	kappa_reg_weight – float, adds a penalty of sum(abs(kappa_{1:N})) to loss,
which regularizes kappa_{1:N} towards zero. Default None is disabled.

	kappa_zero_after – int, clamps kappa_{1:N} to zero after kappa_zero_after
steps. Default None is disabled.

	device_type – string, used to clamp to a particular hardware device. Default
None uses JAX default device placement

	Returns

	A pair. The first element is a float, the final dual loss, which forms a
valid upper bound on the objective specified by verif_instance. The
second element is a dict containing various debug info.

	
class jax_verify.sdp_verify.SdpDualVerifInstance(bounds, make_inner_lagrangian, dual_shapes, dual_types)[source] [https://github.com/deepmind/jax_verify/blob/master/jax_verify/src/sdp_verify/utils.py#L44#L55]

	A namedtuple specifying a verification instance for the dual SDP solver.

	Fields:
	
	bounds: A list of bounds on post-activations at each layer

	make_inner_lagrangian: A function which takes dual_vars as input, and
returns another function, the inner lagrangian, which evaluates
Lagrangian(x, dual_vars) for any value x (the set of activations).

	dual_types: A pytree matching dual_vars specifying which dual_vars
should be non-negative.

	dual_shapes: A pytree matching dual_vars specifying shape of each var.

Index

 C
 | D
 | F
 | I
 | L
 | O
 | S

C

 	
 	crown_bound_propagation() (in module jax_verify)

 	
 	crownibp_bound_propagation() (in module jax_verify)

D

 	
 	dual_fun() (in module jax_verify.sdp_verify)

F

 	
 	fastlin_bound_propagation() (in module jax_verify)

I

 	
 	ibpfastlin_bound_propagation() (in module jax_verify)

 	
 	interval_bound_propagation() (in module jax_verify)

 	IntervalBound (class in jax_verify)

L

 	
 	LinearBound (class in jax_verify)

O

 	
 	open_file() (in module jax_verify)

S

 	
 	SdpDualVerifInstance (class in jax_verify.sdp_verify)

 	solve_planet_relaxation() (in module jax_verify)

 	
 	solve_sdp_dual() (in module jax_verify.sdp_verify)

 	solve_sdp_dual_simple() (in module jax_verify.sdp_verify)

 nav.xhtml

 Table of Contents

 		
 jax_verify Documentation

_static/minus.png

_static/plus.png

_static/file.png

